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Two-dimensional electronic and vibrational band structure of uniaxially strained graphene
from ab initio calculations

Marcel Mohr,"* Konstantinos Papagelis,? Janina Maultzsch,! and Christian Thomsen

1

Unstitut fiir Festkorperphysik, Technische Universitdit Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
2Materials Science Department, University of Patras 26504 Rio Patras, Greece
(Received 5 October 2009; published 10 November 2009)

We present an in-depth analysis of the electronic and vibrational band structure of uniaxially strained
graphene by ab initio calculations. Depending on the direction and amount of strain, the Fermi crossing moves
away from the K point. However, graphene remains semimetallic under small strains. The deformation of the
Dirac cone near the K point gives rise to a broadening of the 2D Raman mode. In spite of specific changes in
the electronic and vibrational band structure the strain-induced frequency shifts of the Raman active E,, and
2D modes are independent of the direction of strain. Thus, the amount of strain can be directly determined

from a single Raman measurement.
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I. INTRODUCTION

The discovery of graphene in 2004 has led to strong re-
search activities in the last years.! Graphene has been shown
to possess unique material properties. In graphene the quan-
tum Hall effect could be observed at room temperature.>>
Due to the specific band structure at the Fermi level, the
electrons can be described as massless Dirac fermions.? Thus
they mimic relativistic particles with zero rest mass and with
an effective “speed of light” ¢/ =~ 10X 10° m/s.* Due to ex-
pected ballistic transport graphene is considered to serve as
building block for microelectronics. For this the graphene
sheets have to be grown on an insulating material such as
SiO, with a different lattice constant. This introduces strain,
and the effect on the electronic properties is therefore ex-
tremely important. Recently, uniaxially strained graphene has
been investigated by Raman spectroscopy.>~’ The amount of
strain influences the frequency of the lattice vibrations. In
addition, the polarization of the Raman signal gives informa-
tion on the orientation of the graphene sample.%’

Theoretically the effect of uniaxial strain on the electronic
properties has been investigated and the opening of a band
gap has been suggested.>® The question as to whether a gap
opens for small strains has remained under considerable
controversy.>>!? The effect of hydrostatic and shear strain on
the vibrational properties has been discussed in Ref. 11. Ef-
fects of uniaxial strain on the vibrational properties have
been investigated via ab initio calculations only for very
large strains on the order of 40% and only for armchair and
zigzag directions.!? In contrast, the maximum strain realized
experimentally has been a few percent.>%!0

Here we investigate the effect of small strains along arbi-
trary directions on the electronic and vibrational properties
of graphene. We demonstrate that graphene remains semime-
tallic under strain and show how the Fermi crossing moves
away from the high-symmetry points. In addition the Dirac
cones become compressed. This influences the double-
resonant 2D Raman mode!>!* as the double-resonance (DR)
condition is altered. The induced anisotropy leads to different
DR conditions for different k£ vectors and to a broadening of
the 2D peak. This broadening is on the order of 10 cm™! for
1% strain when using laser lines in the visible spectrum.
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Although specific changes in the electronic and phononic
band structure for different strain directions are found, the
frequencies of the Raman active E,, and 2D modes are in-
dependent of the direction of strain. Thus the amount of
strain can be directly determined from a single Raman mea-
surement.

II. METHOD

Calculations were performed with the code
QUANTUM-ESPRESSO.'> We used a plane-wave basis set,
RRKIJ pseudopotentials'® and the generalized gradient ap-
proximation in the Perdew, Burke, and Ernzerhof parametri-
zation for the exchange-correlation functional.'” A
Methfessel-Paxton broadening with a width of 0.02 Ry was
used.'® We carefully checked the convergence in the energy
differences between different configurations and the phonon
frequencies with respect to the wave function cutoff, the
charge density cutoff, the k-point sampling of the Brillouin
zone, the number of ¢ points for calculating the dynamical
matrix and the interlayer vacuum spacing for graphene. En-
ergy differences are converged within 5 meV/atom or better,
and phonon frequencies from the whole Brillouin zone
within 5 cm™'. The valence electrons were expanded in a
plane-wave basis with an energy cutoff of 60 Ry. A 42
X 42 X 1 sampling grid was used for the integration over the
Brillouin zone. The dynamical matrices were calculated on a
12X 12X 1 g grid using the implemented linear-response
theory. Force constants were obtained via a Fourier transfor-
mation and interpolated to obtain phonons at arbitrary points
in the Brillouin zone. All frequencies were multiplied by a
constant factor to match the experimental Raman frequency
of graphene.

III. RESULTS AND DISCUSSION

The general three-dimensional Hooke’s law connects the
stress tensor o and the strain tensor € via the stiffness tensor
C: 0;;=Ciju- €. As we are only interested in planar strain, the
tensile strain along the x axis can be expressed via the two-
dimensional strain tensor €=[(€,0),(0,—€v)], where v is
Poisson’s ratio. Since we want to apply arbitrary strain direc-
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FIG. 1. (Color online) (a) The unit cell vectors d;,d, of hexago-
nal graphene. The arrow indicates the direction of the applied strain.
¥=0° always corresponds to the zigzag direction. (b) Brillouin zone
of uniaxially strained graphene in the direction J=0°. The point
group reduces to D, . b 1 and 1;2 are the reciprocal lattice vectors. (c)
Brillouin zone of uniaxially strained graphene in the direction ¢
=20°. The point group reduces to C,,,.

tions the strain tensor has to be rotated €’ =R~ 'eR, where R
is the rotational matrix. Here the x axis corresponds to the
zigzag direction of graphene. After applying a finite amount
of strain we relax the coordinates of the basis atoms until
forces are below 0.001 Ry/a.u. and minimize the total energy
with respect to the Poisson’s ratio v. For small strain values
we obtain a Poisson’s ratio »=0.164, in excellent agreement
with experimental tension measurements on pyrolytic graph-
ite that yield a value of ¥=0.163.!° Strain reduces the sym-
metry of the hexagonal system. For strain in arbitrary direc-
tions the point group is reduced from Dy, to C,;, only the C,
rotation (rotation by 180°) and the inversion are retained
(and the trivial mirror plane). For strain along the 0° or 30°
directions additionally mirror planes remain, resulting in D,
symmetry. A sketch of the hexagonal lattice and the corre-
sponding strain in real space can be seen in Fig. 1(a). Due to
the hexagonal symmetry only strain in the range between
U=0° and 30° are physically interesting.

In Figs. 1(b) and 1(c) the resulting Brillouin zones for
strain in the directions 0° and 20° are shown. For clarity we
have used an exaggerated strain of €=0.3. Like in unstrained
graphene, the six corner points of the Brillouin zone corre-
spond to the K points. In the unstrained lattice these K
points, e.g., K; can be expressed via K;=1/3b;+2/3b,,
where b; are the reciprocal lattice vectors. The same defini-
tion does not hold anymore for the strained lattice, where the
K points can be obtained by constructing the perpendicular
bisectors to all neighboring lattice points and determine their
intersection point.

The usual way to plot band structures is along the high-
symmetry directions. For unstrained graphene this corre-
sponds to I'-K-M-I'. In strained graphene, as the sixfold
symmetry is broken these lines are not sufficient to cover all
high-symmetry lines. For strain in the ¥=0° direction we
choose the lines I'-K,-M,-I" and I'-K53-M;-T", the remaining
ones can be found by symmetry. In Fig. 2 we plot the elec-
tronic band structure and the phonon dispersion curves for
2% strain and the unstrained graphene. The most obvious
changes in the electronic band structure include an increase
in energy of the m-type valence bands along the K-M direc-
tion. The splitting of the o-type valence bands at E=
—3 eV can clearly be seen. A closeup of the vicinity of the K
point reveals that the crossing of the Fermi level only takes
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FIG. 2. (Color online) (a) The electronic band structure and (b)
the phonon dispersion curves of unstrained and €=0.02 strained
graphene along the J=0°-direction. The corresponding paths in the
Brillouin zone are indicated. A closeup for the electronic bands
along KM is shown in the inset of (a).

place between K5 and M5. To further investigate the position
of the Fermi crossing we evaluate the direct optical transition
(DOT) energy of the -7 bands in the vicinity of the K
point. In Fig. 3 we show energy contour plots of the DOT
energy of the -7 bands. Each plot is centered at its respec-
tive K; point. The dimension of the sides of the square is
0.027/ay, where a is the lattice constant. We show a un-
strained and a 2%-strained configuration for J=0° and 20°.
Although our plots show only the vicinity of the K; point,
the remaining plots can easily be constructed. Three of the
six K points are equivalent: This can be seen by apparent
simple arguments: an arbitrary K point, K; corresponds to a
set of different of K points in the adjacent Brillouin zones
(Ki12,K;.4). The equivalence to the remaining three K points
follows by the C, rotation (or inversion), where K; maps to
K;.3. Thus the contour plots of K; i=1,3,5 are identical, the
remaining contour plots K; i=2,4,6 are found by inversion.

As can be seen, for the unstrained configuration the Dirac
cones coincide with the K point. For the strained configura-
tion at U=0° the crossing moves along the K3-M; line. Now
the origin of the bands in Fig. 2(a) becomes clear: the line
along K,-M, cuts the Dirac cones away from the center,
resulting in a small opening of the bands.

For the strained configuration at 9=20° shown in Fig.
3(c) the Fermi crossing moves away from the zone edge into
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FIG. 3. (Color online) (a)—(c) Contour plots of the direct optical
transition energy of the m-7r" bands. The energy is given in eV.
Each is plot centered at its respective K point. The length of each
side is 0.027r/a. Shown here is the plot around K. Plots around K;
(i=3,5) are identical. K; (i=2,4,6) can be found by inversion. (a)
Unstrained configuration, (b) 2% strained configuration for 9=0°
and (c) a 2% strained configuration for 9=20°. (d) Numerically
obtained angle « as a function of the direction of strain . Line
shows the function a=21.

the Brillouin zone. The question of whether or not a gap
opens in graphene under small strains must be answered by
looking into the appropriate direction in reciprocal space.
The tip of the Dirac cones, according to our DFT calcula-
tions, lie on lines through K that enclose an angle of a=2%
and the K-M line [see Fig. 3(c)]. Looking at the band struc-
ture along the strained high-symmetry directions, in contrast,
corresponds to cuts of the Dirac cones not centered at the
Fermi level crossing, seemingly suggesting an energy gap.
This becomes important for strain in directions other than
9=0° and 9=30°, when the Fermi level does not coincide
with the Brillouin zone edges.

We now turn our attention to the changes in the vibra-
tional spectrum when strain is applied. The vibrational bands
show the general trend of softening under strain. In contrast,
the lowest-energy acoustic mode hardens. This mode, which
shows a quadratic dependence for ¢— 0 for unstrained
graphene, is an out-of-plane mode and therefore referred to
as ZA mode.?® The hardening only occurs for the line in the
I'-K, direction. Also the quadratic dependence for ¢—0
changes into a linear dependence. This line describes propa-
gating waves along the direction of the applied strain. Thus
the hardening can be compared to the frequency increase
when tension is applied to a string.

At the I' point the high-energy E,, phonon at 1581 cm™!
is two-fold degenerate for graphene. This degeneracy is
lifted under strain. As shown in Refs. 6 and 7 the E,, mode
of graphene splits into two distinct modes. These two modes
possess eigenvectors parallel and perpendicular to the strain
direction. The mode parallel (perpendicular) to the strain di-
rection undergoes a larger (smaller) redshift and is therefore
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FIG. 4. (Color online) (a) Double resonance mechanism for the
2D mode. The energy of the scattering phonons is neglected. (b)
Contour plot of the lowest-energy conduction band. (c) Band struc-
ture between K and K’ between different K points. The correspond-
ing paths are shown in (b). Depending on the electronic transition a
different wave vector of the scattered phonon becomes resonantly
enhanced. This leads to a broadening of 2D mode, as contributions
from the vicinity of all K points are added up.

entitled G~ (G"). As discussed in Ref. 6 the strain rate of the
G~ (G") mode is independent of the direction of strain, a
result which we find confirmed in our calculations. This re-
sult stems from the isotropy of the hexagonal lattice.

In graphene the shape of the double-resonant 2D mode
gives information on the number of layers.?! This mode is
energy dependent and double resonant.!>!% The mechanism
of a DR process is shown in Fig. 4(a). Here the phonon
energy is assumed to be zero. The contributing phonon
branch, the TO mode, is the mode with the highest energy
between K and M [see Fig. 2(b)]. Although the 2D mode
contains contributions from all over the Brillouin zone, the
main contributions come from the K-K’ valleys as shown by
Narula and Reich.?? Thus the one-dimensional treatment of
the DR gives a good approximation.

The changes in the electronic bands and the vibrational
bands both influence the 2D mode. Contour plots of the TO
mode energy are shown in Fig. 5 for the unstrained and the
2% strained configuration for ¥=0° and 20°. Each plot is
centered at its respective K; point. Although the general
shape of the vibrational mode differs more strongly than the
electronic bands under strain, the stronger contribution for
the shift of the 2D mode comes from changes in the elec-
tronic structure.

Figure 4(b) shows a contour plot of the lowest-energy
conduction band and two different K-K' paths for the
=0° direction. In Fig. 4(c) we plot the electronic bands along
these two paths. Depending on the wave vector of the elec-
tronic transition a different phonon wave vector is doubly-
resonant enhanced. This leads to differences in phonon en-
ergy of up to 10 cm™!/% strain and explains the broadening
of the 2D mode under strain.®’” Experimentally the broaden-
ing is found to be around 13 ¢cm™'/% strain.®

In Table I we show a summary of the determined shift
rates for the G*, G—, and 2D modes. These rates are for small
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FIG. 5. (Color online) Contour plot of the fully symmetric TO phonon branch centered at the K; point. The TO mode contributes
exclusively to the D mode. The dimension of the sides of the square is 0.277/a( (a) Unstrained configuration, (b) 2% strained configuration

for 9=0° and (c) 2% strained configuration for 9=20°.

strain values up to 2%. Our calculated values are in excellent
agreement with the experimental results from Ref. 6, al-
though the calculated values are a bit higher. In contrast to
the G* and G~ modes, the 2D mode behaves slightly nonlin-
ear for strain greater than 1%. Therefore we suggest to mea-

TABLE 1. Shift rates for the G*, the G~ and the 2D mode in
strained graphene (in cm™'/% strain). For the excitation energy
dependent 2D mode the excitation energy is written in parentheses.

Raman mode Ref. 5 Ref. 6 Ref. 6* Ref.7 This work
G* -142 -10.8 -18.6 -5.6 -145
G- b -31.7 =368 -12.5 -34.0
2D (2.41 eV) -64 -46...54
2D (2.33 eV) -27.8 =21 -46...54
2D (1.96 eV) -46...55

#Rate for freestanding graphene.
"No distinction between G* and G~

sure the G* and G~ modes for determining the strain rather
than the 2D mode.

IV. SUMMARY

In summary, we have presented an in-depth analysis of
the electronic and vibrational properties of uniaxially
strained graphene. We demonstrated that graphene remains
semimetallic under small strain. The change in the Fermi
surface suggests favored directions for electronic transport
depending on the direction of strain. Our calculated shift
rates of the Raman active G and 2D band will help experi-
mentalists to determine the strain. Due to a deformation of
the threefold Dirac cone around the K point the double-
resonance condition changes and gives rise to a broadening
of the 2D mode.
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